Full Authority Digital Engine (or Electronics) Control (FADEC) is a system consisting of a digital computer, called an electronic engine controller (EEC) or engine control unit (ECU), and its related accessories that control all aspects of aircraft engine performance. FADECs have been produced for both piston engines and jet engines.
The goal of any engine control system is to allow the engine to perform at maximum efficiency for a given condition. The complexity of this task is proportional to the complexity of the engine. Originally, engine control systems consisted of simple mechanical linkages controlled by the pilot then evolved and became the responsibility of the third pilot-certified crew member, the flight engineer. By moving throttle levers directly connected to the engine, the pilot or the flight engineer could control fuel flow, power output, and many other engine parameters.
Following mechanical means of engine control came the introduction of analog electronic engine control. Analog electronic control varies an electrical signal to communicate the desired engine settings. The system was an evident improvement over mechanical control but had its drawbacks including common electronic noise interference and reliability issues. Full authority analogue control was used in the 1960s and introduced as a component of the Rolls Royce Olympus 593 engine of the supersonic transport aircraft Concorde.However the more critical inlet control was digital on the production aircraft.
Following analog electronic control, the logical progression was to digital electronic control systems. Later in the 1970s NASA and Pratt and Whitney experimented with the first experimental FADEC, first flown on an F-111 fitted with a highly modified Pratt & Whitney TF30 left engine. The experiments led to Pratt & Whitney F100 and Pratt & Whitney PW2000 being the first military and civil engines respectively fitted with FADEC and later the Pratt & Whitney PW4000 as the first commercial "dual FADEC" engine. The first FADEC in service was developed for the Harrier II Pegasus engine by Dowty & Smiths Industries Controls.
True full authority digital engine controls have no form of manual override available, placing full authority over the operating parameters of the engine in the hands of the computer. If a total FADEC failure occurs, the engine fails. If the engine is controlled digitally and electronically but allows for manual override, it is considered solely an EEC or ECU. An EEC, though a component of a FADEC, is not by itself FADEC. When standing alone, the EEC makes all of the decisions until the pilot wishes to intervene.
True full authority digital engine controls have no form of manual override available, placing full authority over the operating parameters of the engine in the hands of the computer. If a total FADEC failure occurs, the engine fails. If the engine is controlled digitally and electronically but allows for manual override, it is considered solely an EEC or ECU. An EEC, though a component of a FADEC, is not by itself FADEC. When standing alone, the EEC makes all of the decisions until the pilot wishes to intervene.
FADEC works by receiving multiple input variables of the current flight condition including air density, throttle lever position, engine temperatures, engine pressures, and many other parameters. The inputs are received by the EEC and analyzed up to 70 times per second. Engine operating parameters such as fuel flow, stator vane position, bleed valve position, and others are computed from this data and applied as appropriate. FADEC also controls engine starting and restarting. The FADEC's basic purpose is to provide optimum engine efficiency for a given flight condition.
FADEC not only provides for efficient engine operation, it also allows the manufacturer to program engine limitations and receive engine health and maintenance reports. For example, to avoid exceeding a certain engine temperature, the FADEC can be programmed to automatically take the necessary measures without pilot intervention.........
DOWNLOAD PAPERS :